Because males produce sperm and females produce eggs (ova), there is a division of labor in reproduction, and the reproductive organs of males and females are different (Figure 1.3k, l). Additionally, the female's reproductive structures provide the site for fertilization of eggs by sperm, and then protect and nurture the developing fetus until birth.

Growth

Growth is an increase in size of a body part or the organism as a whole. It is usually accomplished by increasing the number of cells. However, individual cells also increase in size when not dividing. For true growth to occur, constructive activities must occur at a faster rate than destructive ones.

Survival Needs

The ultimate goal of all body systems is to maintain life. However, life is extraordinarily fragile and requires several factors. These factors, which we will call *survival needs*, include nutrients (food), oxygen, water, and appropriate temperature and atmospheric pressure.

Nutrients

Nutrients, taken in via the diet, contain the chemical substances used for energy and cell building. Most plant-derived foods are rich in carbohydrates, vitamins, and minerals, whereas most animal foods are richer in proteins and fats.

Carbohydrates are the major energy fuel for body cells. Proteins, and to a lesser extent fats, are essential for building cell structures. Fats also provide a reserve of energy-rich fuel. Selected minerals and vitamins are required for the chemical reactions that go on in cells and for oxygen transport in the blood. The mineral calcium helps to make bones hard and is required for blood clotting.

Oxygen

All the nutrients in the world are useless unless **oxygen** is also available. Because the chemical reactions that release energy from foods are *oxidative* reactions that require oxygen, human cells can survive for only a few minutes without oxygen. Approximately 20% of the air we breathe is oxygen. The cooperative efforts of the respiratory and cardiovascular systems make oxygen available to the blood and body cells.

Water

Water accounts for 60–80% of our body weight and is the single most abundant chemical substance in the body. It provides the watery environment necessary for chemical reactions and the fluid base for body secretions and excretions. We obtain water chiefly from ingested foods or liquids. We lose it from the body by evaporation from the lungs and skin and in body excretions.

Normal Body Temperature

If chemical reactions are to continue at life-sustaining rates, **nor-mal body temperature** must be maintained. As body temperature drops below 37°C (98.6°F), metabolic reactions become

slower and slower, and finally stop. When body temperature is too high, chemical reactions occur at a frantic pace and body proteins lose their characteristic shape and stop functioning. At either extreme, death occurs. The activity of the muscular system generates most body heat.

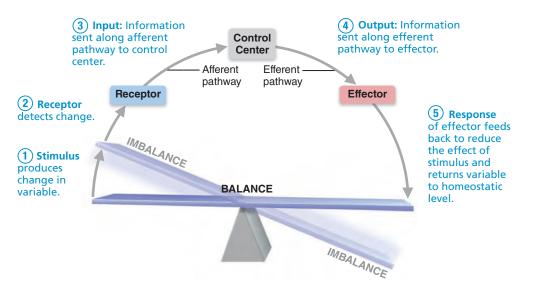
Appropriate Atmospheric Pressure

Atmospheric pressure is the force that air exerts on the surface of the body. Breathing and gas exchange in the lungs depend on *appropriate* atmospheric pressure. At high altitudes, where atmospheric pressure is lower and the air is thin, gas exchange may be inadequate to support cellular metabolism.

The mere presence of these survival factors is not sufficient to sustain life. They must be present in *appropriate* amounts. Too much and too little may be equally harmful. For example, oxygen is essential, but excessive amounts are toxic to body cells. Similarly, the food we eat must be of high quality and in proper amounts. Otherwise, nutritional disease, obesity, or starvation is likely. Also, while the needs listed above are the most crucial, they do not even begin to encompass all of the body's needs. For example, we can live without gravity if we must, but the quality of life suffers.

\mathbf{V} Check Your Understanding

- 6. What separates living beings from nonliving objects?
- **7.** What name is given to all chemical reactions that occur within body cells?
- **8.** Why is it necessary to be in a pressurized cabin when flying at 30,000 feet?


For answers, see Appendix H.

Homeostasis

- Define homeostasis and explain its significance.
- Describe how negative and positive feedback maintain body homeostasis.
- Describe the relationship between homeostatic imbalance and disease.

When you think about the fact that your body contains trillions of cells in nearly constant activity, and that remarkably little usually goes wrong with it, you begin to appreciate what a marvelous machine your body is. Walter Cannon, an American physiologist of the early twentieth century, spoke of the "wisdom of the body," and he coined the word **homeostasis** (ho"me-o-sta'sis) to describe its ability to maintain relatively stable internal conditions even though the outside world changes continuously.

Although the literal translation of homeostasis is "unchanging," the term does not really mean a static, or unchanging, state. Rather, it indicates a *dynamic* state of equilibrium, or a balance, in which internal conditions vary, but always within relatively

Figure 1.4 Interactions among the elements of a homeostatic control system maintain stable internal conditions.

narrow limits. In general, the body is in homeostasis when its needs are adequately met and it is functioning smoothly.

Maintaining homeostasis is more complicated than it appears at first glance. Virtually every organ system plays a role in maintaining the constancy of the internal environment. Adequate blood levels of vital nutrients must be continuously present, and heart activity and blood pressure must be constantly monitored and adjusted so that the blood is propelled to all body tissues. Also, wastes must not be allowed to accumulate, and body temperature must be precisely controlled. A wide variety of chemical, thermal, and neural factors act and interact in complex ways—sometimes helping and sometimes hindering the body as it works to maintain its "steady rudder."

Homeostatic Control

Communication within the body is essential for homeostasis. Communication is accomplished chiefly by the nervous and endocrine systems, which use neural electrical impulses or bloodborne hormones, respectively, as information carriers. We cover the details of how these two great regulating systems operate in later chapters, but here we explain the basic characteristics of control systems that promote homeostasis.

Regardless of the factor or event being regulated—the **variable**—all homeostatic control mechanisms are processes involving at least three components that work together (**Figure 1.4**). The first component, the **receptor**, is some type of sensor that monitors the environment and responds to changes, called *stimuli*, by sending information (input) to the second component, the *control center*. Input flows from the receptor to the control center along the so-called *afferent pathway*.

The **control center** determines the *set point*, which is the level or range at which a variable is to be maintained. It also analyzes the input it receives and determines the appropriate response or course of action. Information (output) then flows from the control center to the third component, the *effector*, along the *efferent* *pathway.* (To help you remember the difference between "afferent" and "efferent," you might note that information traveling along the afferent pathway *approaches* the control center and efferent information *exits* from the control center.)

The **effector** provides the means for the control center's response (output) to the stimulus. The results of the response then *feed back* to influence the effect of the stimulus, either reducing it (in negative feedback) so that the whole control process is shut off, or enhancing it (in positive feedback) so that the whole process continues at an even faster rate.

Negative Feedback Mechanisms

Most homeostatic control mechanisms are **negative feedback mechanisms**. In these systems, the output shuts off the original effect of the stimulus or reduces its intensity. These mechanisms cause the variable to change in a direction *opposite* to that of the initial change, returning it to its "ideal" value; thus the name "negative" feedback mechanisms.

Let's start with an example of a nonbiological negative feedback system: a home heating system connected to a temperaturesensing thermostat. The thermostat houses both the receptor (thermometer) and the control center. If the thermostat is set at 20°C (68°F), the heating system (effector) is triggered ON when the house temperature drops below that setting. As the furnace produces heat and warms the air, the temperature rises, and when it reaches 20°C or slightly higher, the thermostat triggers the furnace OFF. This process results in a cycling of "furnace-ON" and "furnace-OFF" so that the temperature in the house stays very near the desired temperature of 20°C. Your body "thermostat," located in a part of your brain called the hypothalamus, operates in a similar fashion (**Figure 1.5**).

Regulation of body temperature is only one of the many ways the nervous system maintains the constancy of the internal environment. Another type of neural control mechanism is seen in the *withdrawal reflex* mentioned earlier, in which the hand is jerked away from a painful stimulus such as broken glass.

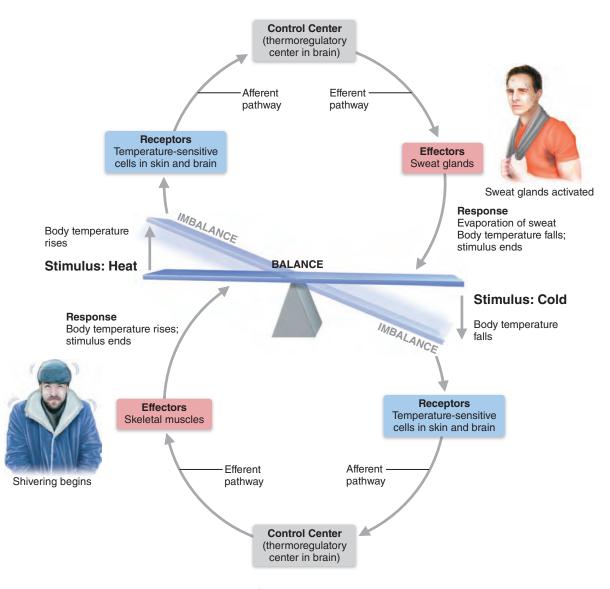


Figure 1.5 Body temperature is regulated by a negative feedback mechanism.

The endocrine system is equally important in maintaining homeostasis. A good example of a hormonal negative feedback mechanism is the control of blood sugar (glucose) by insulin. As blood sugar rises, receptors in the body sense this change, and the pancreas (the control center) secretes insulin into the blood. This change in turn prompts body cells to absorb more glucose, removing it from the bloodstream. As blood sugar falls, the stimulus for insulin release ends. The body's ability to regulate its internal environment is fundamental. All negative feedback mechanisms have the same goal: preventing sudden severe changes within the body. Body temperature and blood volume are only two of the variables that need to be regulated. There are hundreds! Other negative feedback mechanisms regulate heart rate, blood pressure, the rate and depth of breathing, and blood levels of oxygen, carbon dioxide, and minerals. Now, let's take a look at the other type of feedback control mechanism—positive feedback.

Positive Feedback Mechanisms

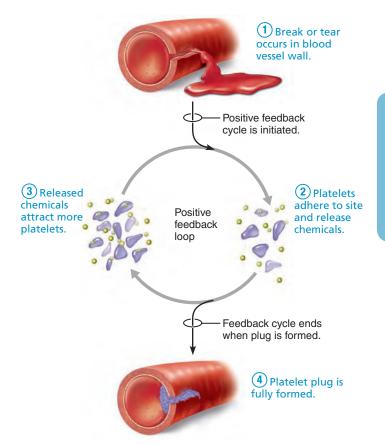
In **positive feedback mechanisms**, the result or response enhances the original stimulus so that the response is accelerated. This feedback mechanism is "positive" because the change that results proceeds in the *same* direction as the initial change, causing the variable to deviate further and further from its original value or range.

In contrast to negative feedback controls, which maintain some physiological function or keep blood chemicals within narrow ranges, positive feedback mechanisms usually control infrequent events that do not require continuous adjustments. Typically, they set off a series of events that may be self-perpetuating and that, once initiated, have an amplifying or waterfall effect. Because of these characteristics, positive feedback mechanisms are often referred to as *cascades* (from the Italian word meaning "to fall"). Two familiar examples of their use as homeostatic mechanisms are the enhancement of labor contractions during birth and blood clotting. Chapter 28 describes the positive feedback mechanism in which oxytocin, a hypothalamic hormone, intensifies labor contractions during the birth of a baby (see Figure 28.17). Oxytocin causes the contractions to become both more frequent and more powerful. The increased contractions cause more oxytocin to be released, which causes more contractions, and so on until the baby is finally born. The birth ends the stimulus for oxytocin release and shuts off the positive feedback mechanism.

Blood clotting is a normal response to a break in the wall of a blood vessel and is an excellent example of an important body function controlled by positive feedback. Basically, once a vessel has been damaged, blood elements called platelets immediately begin to cling to the injured site and release chemicals that attract more platelets. This rapidly growing pileup of platelets temporarily "plugs" the tear and initiates the sequence of events that finally forms a clot (**Figure 1.6**). Positive feedback mechanisms are likely to race out of control, so they are rarely used to promote the moment-to-moment well-being of the body. However, some positive feedback mechanisms, including this one, may have only local reach. For example, blood clotting is accelerated in injured vessels, but does not normally spread to the entire circulation.

Homeostatic Imbalance

Homeostasis is so important that most disease can be regarded as a result of its disturbance, a condition called **homeostatic imbalance**. As we age, our body's control systems become less efficient, and our internal environment becomes less and less stable. These events increase our risk for illness and produce the changes we associate with aging.


Another important source of homeostatic imbalance occurs when the usual negative feedback mechanisms are overwhelmed and destructive positive feedback mechanisms take over. Some instances of heart failure reflect this phenomenon.

Examples of homeostatic imbalance appear throughout this book to enhance your understanding of normal physiological mechanisms. This symbol introduces the homeostatic imbalance sections and alerts you to the fact that we are describing an abnormal condition. Each Homeostatic Imbalance section is numbered to correspond with critical thinking questions available in the Study Area of MasteringA&P—visit www.masteringaandp.com to find Homeostatic Imbalance questions and other helpful study tools.

🗹 Check Your Understanding

- **9.** What process allows us to adjust to either extreme heat or extreme cold?
- 10. When we begin to get dehydrated, we usually get thirsty, which causes us to drink fluids. Is thirst part of a negative or a positive feedback control system? Defend your choice.
- **11.** Why is the control mechanism shown in Figure 1.6 called a positive feedback system? What event ends it?

For answers, see Appendix H.

Figure 1.6 A positive feedback mechanism regulates formation of a platelet plug.

The Language of Anatomy

- ✓ Describe the anatomical position.
- Use correct anatomical terms to describe body directions, regions, and body planes or sections.

Most of us are naturally curious about our bodies, but our interest sometimes dwindles when we are confronted with the terminology of anatomy and physiology. Let's face it—you can't just pick up an anatomy and physiology book and read it as though it were a novel.

Unfortunately, confusion is likely without precise, specialized terminology. To prevent misunderstanding, anatomists use universally accepted terms to identify body structures precisely and with a minimum of words. We present and explain the language of anatomy next.

Anatomical Position and Directional Terms

To describe body parts and position accurately, we need an initial reference point, and we must indicate direction. The anatomical reference point is a standard body position called the **anatomical position**. In the anatomical position, the body is erect with feet slightly apart. This position is easy to remember because it resembles "standing at attention," except that the palms face