Unit 7 Blood

Composition of Blood Erythrocytes Disorders of Erythrocytes Hematocrit Leukocytes Disorders of Leukocytes Platelets Hemostasis Disorders of Clotting Blood Types Blood Transfusion

AN Incredible MACHINE

WHAT is **PRODUCTION**

BLOOD IS COMPOSED & TISSUE CELLS & PLASMA 80% WATER, 20% SOLID.

Composition of Blood

Red Marrow: Hematopoietic

Yellow Marrow: Fat, Cartilage, Bone Formation

That's a lot of Blood!

9 Venti's and 1 Grande

Analysis

- What two components make up whole blood?
- What is the anatomical term for the formed elements (cells/cell-origin)?
- What is the function of the following in the blood?
 - Water
 - Plasma Proteins
 - Erythrocytes
 - Platelets
- What type(s) of Leukocytes have nonspecific immunity?
- What type(s) of Leukocytes have specific immunity?

- Approximately how much blood is in the average human body?
- Name two reasons for higher blood volume?
- Where are Erythrocytes and Leukocytes made in the body?

Erythrocytes

Erythrocytes Development

Erythrocytes

Polycythemia vs. Anemia

Women

Anemia is More Common in Women than Men

29% of Non-Pregnant

Pregnant Women

WHAT IS SICKLE CELL TRAIT?

SICKLE CELL TRAIT

Sickle cell trait is not a disease. Sickle cell trait is the inheritance of one gene for sickle hemoglobin and one for normal hemoglobin. Sickle cell trait will not turn into the disease. Sickle cell trait is a life-long condition that will not change over time.

- During intense exercise, red blood cells containing the sickle hemoglobin can change shape from round to quarter-moon, or "sickle."
- Sickled red cells may accumulate in the bloodstream during intense exercise, blocking normal blood flow to the tissues and muscles.
- During intense exercise, athletes with sickle cell trait have experienced significant physical distress, collapsed and even died.
- Heat, dehydration, altitude and asthma can increase the risk for and worsen complications associated with sickle cell trait, even when exercise is not intense.
- Athletes with sickle cell trait should not be excluded from participation as precautions can be put into place.

Thalassemia Normal Thalassemia Malformed red blood cell Red Blood Cell White Blood Cell White Blood Cell Platelet Platelet Hemorrhagic Anemia Symptoms of Anemia Red = In severe Central anemia - Fatigue Eyes - Dizziness BONE MARROW - Yellowing - Fainting Skin-Blood vessels P - Paleness - Low blood pressure - Coldness Heart - Yellowing - Palpitations Respiratory CREATES RED - Rapid heart - Shortness BLOOD CELLS rate of breath - Chest pain Muscular-- Angina - Weakness - Heart attack Spleen Intestinal - Enlarge-Changed tool color ment

Determining Hematocrit

> Figure 11-5 Hematocrit under various circumstances. (a) Normal hematocrit. (b) The hematocrit is lower than normal in anemia because of too few circulating erythrocytes. (c) The hematocrit is above normal in polycythemia because of excess circulating erythrocytes. (d) The hematocrit can also be elevated in dehydration when the normal number of circulating erythrocytes is concentrated in a reduced plasma volume.

Range of Normal Hematocrit Levels

- Newborn 55%-68%
- 1 Month 37%-49%
- 1 Year 29%-41%
- Ten Years 36%-40%
- Adult Males 42%-54%
- Adult Males High Altitude 45-61%
- Adult Women 38%-46%
- Adult Women High Altitude 41%-56%
- Adult Pregnant Women 31%-41%

Factors that Affect Hematocrit

- Gender
- Age
- Pregnancy
- Hydration
- Smoking
- Disease/Illness
- Altitude
- Disorder that affect RBC & Hemoglobin
 Polycythemia & Anemia

How to Calculate Hematocrit

Height of RBC/Total Height of RBC + Plasma

Hematocrit Determination

Where:

- H₁ = height of the RBC column
- H₂ = height of the RBC
 + height of the plasma column
- Calculate Hc%
 (hematocrit) value

Analysis

- What is the difference between an Erythroblast and Erythrocyte?
- What is the shape of the Erythrocyte?
- Where does an Erythrocyte carry oxygen?
- Where does an Erythrocyte carry carbon dioxide?
- Approximately how long does it take for the bone marrow to secrete erythrocytes?
- Approximately how long does an average erythrocyte live in the blood stream?
 - Why do you think an erythrocyte doesn't live any longer than that?
- What hormone stimulates the production of Erythrocyte?

- In the absence of this element, erythrocyte production decreases.
- What is polycythemia?
 - What is blood doping?
- What is anemia? Symptoms?
 - What is iron-deficient anemia?
 - Hemolytic anemia?
 - Thalassemia?
 - Hemorrhagic anemia?
 - Sick-Cell Anemia?
- What is a Hematocrit?
- How do you calculate a Hematocrit?
- What can a Hematocrit tell you about the health, gender, age and environment of a patient.

Formed element	Major subtypes	Numbers present per microliter (µL) and mean (range)	Appearance in a standard blood smear	Summary of functions	Comments
	l	Leukocyte	esGranulo	ocytes	
Leukocytes (white blood cells)		7000 (5000–10,000)	Obvious dark-staining nucleus	All function in body defenses	Exit capillaries and move into tissues; lifespan of usually a few hours or days
	Granulocytes including neutrophils, eosinophils, and basophils	4360 (1800–9950)	Abundant granules in cytoplasm; nucleus normally lobed	Nonspecific (innate) resistance to disease	Classified according to membrane-bound granules in cytoplasm
	Neutrophils 4150 (1800–7300)		Nuclear lobes increase with age; pale lilac granules	Phagocytic; particularly effective against bacteria. Release cytotoxic chemicals from granules	Most common leukocyte; lifespan of minutes to days
	Eosinophils	165 (0–700)	Nucleus generally two-lobed; bright red-orange granules	Phagocytic cells; particularly effective with antigen- antibody complexes. Release antihistamines. Increase in allergies and parasitic infections	Lifespan of minutes to days
	Basophils	44 (0–150)	Nucleus generally two-lobed but difficult to see due to presence of heavy, dense, dark purple granules	Promotes inflammation	Least common leukocyte; lifespan unknown

Formed Major element subtypes	Numbers present per microliter (µL) and mean (range)	Appearance in a standard blood smear	Summary of functions	Comments
----------------------------------	---	--	-------------------------	----------

Leukocytes--Agranulocytes

Agranulocytes including lymphocytes and monocytes	2640 (1700–4950)	Lack abundant granules in cytoplasm; have a simple- shaped nucleus that may be indented	Body defenses	Group consists of two major cell types from different lineages
Lymphocytes	2185 (1500–4000)	Spherical cells with a single often large nucleus occupying much of the cell's volume; stains purple; seen in large (natural killer cells) and small (B and T cells) variants	Primarily specific (adaptive) immunity: T cells directly attack other cells (cellular immunity); B cells release antibodies (humoral immunity); natural killer cells are similar to T cells but nonspecific	Initial cells originate in bone marrow, but secondary production occurs in lymphatic tissue; several distinct subtypes; memory cells form after exposure to a pathogen and rapidly increase responses to subsequent exposure; lifespan of many years
Monocytes	455 (200–950)	Largest leukocyte with an indented or horseshoe-shaped nucleus	Very effective phagocytic cells engulfing pathogens or worn out cells; also serve as antigen- presenting cells (APCs) for other components of the immuno system	Produced in red bone marrow; referred to as macrophages after leaving circulation

Stem Cell Origin of Formed Elements

How does the body know to mount a defense?

Macrophage engulfs pathogen.

(3) Within the damaged tissue, monocytes differentiate into macrophages that phagocytize the pathogens. The eosinophils and neutrophils release chemicals that break apart pathogens. They are also capable of phagocytosis.

Analysis

- Can you identify the physical differences between:
 - Monocytes
 - Lymphocytes
 - Neutrophils
 - Eosinophils
 - Basophils
- Can you explain the functional difference between:
 - Granulocytes/Agranulocytes
 - Non-Specific Immunity/Specific Immunity
 - Monocytes (M-M-M)
 - Lymphocytes (NK, T & B Cells)
 - Neutrophils
 - Eosinophils
 - Basophils
- How does the immune system work together to detect and manage infection?

- What type of stem cell gives rise to cells/cell types except lymphocytes?
- Monocytes and Lymphocytes are both agranular, however their origin is very different—why?
- What will lymphoma look like under the microscope? Why?
- What will leukemia look like under the microscope? Why?

Formed element	Major subtypes	Numbers present per microliter (µL) and mean (range)	Appearance in a standard blood smear	Summary of functions	Comments		
		Platelets	Thrombo	cytes			
Platelets		350,000 (150,000–500,000)	Cellular fragments surrounded by a plasma membrane and containing granules; purple stain		Formed from megakaryocytes that remain in the red bone marrow and shed platelets into circulation		
	Stem cell	Developmental path	way Promegakaryocyte Me	egakaryocyte Platelet			

Hemostasis

Coagulation. In coagulation, fibrinogen is converted to fibrin (see part b), which forms a mesh that traps more platelets and erythrocytes, producing a clot.

Spot Magn 3.0 5698x

Det

Fibrin strands secure platelets and erythrocytes, effectively plugging the break.

Clotting is an Issue?

Analysis

- What specialized type of cell produces platelets (thromocytes?)
- Are platelets true cells?
- What is hemostasis?
- How does the body know to send platelets and fibrogen to an injured site?
- Why are platelets in active/non-active forms?
- What is the difference between an activated and inactivated platelet?
- What is the difference between fibrogen and fibrin?
- Why can't fibrin just exist in the blood stream?

- What is the difference between an embolus and an thrombus?
- What are the issues with thrombus in the veins vs. arteries?
- What is innate hemophila? Are there different types?
- Why do people acquire clotting issues?
- What is the treatment for various types of hemophilia?

Blood Types

Blood Types Antigens and Antibodies

	Blood Type							
	А	В	AB	0				
Red Blood Cell Type			AB					
Antibodies in Plasma	Anti-B	Anti-A	None	Anti-A and Anti-B				
Antigens in Red blood Cell	¶ A antigen	Ŷ B antigen	A and B antigens	None				
Blood Types Compatible in an Emergency	Α, Ο	B, O	A, B, AB, O (AB ⁺ is the universal recipient)	O (O is the universal donor)				

Blood Types and Rh Factor

Performing Blood Typing Test

Add blood to each reaction well

Blood Type Inheritance

Blood Type	G	enotype	Alleles Produced	Q							Ŷ
		RR	R			R	r			IA	i
Rh po	ositive	Rr	R or r	~7	R	RR	Rr		a I ^B	IAI E	³ l ^B ì
Rh ne	Rh negative rr		r	O		Rr	rr		i	l ^A i	ii
Blood Type	Geno	otype	Can Receive Blood From:					Ē ♀			
А	i^i	AA	A or O			ľ	^R	l ^A r	iR		ir
	1^1^	AO		-	I ^B R	IAI	BRR	I ^A I ^B Rr	I ^B iRI	٦	I ^B iRr
в	і ^в і ,в,в	BB BO	B or O		IB.	141	BD a	IAIBren	IB:D		IBirra
	11			\sim	P		°RI		PIR		
AB	<i>i[^]i</i>	AB	A, B, AB, O		iR	IAi	iRR	l ^A iRr	iiRR		iiRr
0	11	00	0		ir	۱A	iRr	l ^A irr	iiRr		iirr

Blood Incompatibility Antibody, Antigen Reactions

The plasma contains antibodies that will react with foreign surface antigens in a process called agglutination. The cells may also break apart, an event known as hemolysis.

Rh Factor

Immediate Reaction

Delayed Reaction

Blood Donations & Transfusions

Whole Blood: Typical Donation. Can be used as is or separated for erythrocytes, thrombocytes and plasma.

Power Red: Donate 2x the amount of erythrocytes, keep your plasma and platelets!

Plasma: Donate your plasma, keep your erythrocytes and platelets! Amount depends on weight of donor.

Platelets: Donate your platelets, get your erthrocyes and plasma back.

Donating Blood

he red cells from your donation are being used in the following ways

************** *****

18% Surgical patients including open heart surgery and burns

10% Orthopaedic patients including fractures and joint replacements

Bloodhound Study Monsch Institute of Health Services Research 2007

19% Other causes of anaemia

4% Obstetrics, including pregnant women, 2% Trauma including new mothers and young children road accidents

Donation Type	Donation Frequency*	
Blood (whole blood)	Every 56 days	
Platelets	Every 7 days, up to 24 times / year	
Plasma	Every 28 days, up to 13 times / year	
Power Red	Every 112 days, up to 3 times / year	

*If more than one donation type is donated, this will affect the number of allowable donations per year due to red cell and plasma loss limit guidelines. Final eligibility will be determined by the American Red Cross at the time of donation.

Common Reasons that Prevent Donation

Temporary reasons for not being able to donate blood:

- •Too young, underweight
- •illness, anemic, currently on antibiotics

•In the last 12 months have you...

Received a new tattoo
Engaged in male-male intercourse
Body Piercing
Visited a country which has Malaria?

Conditions in which you can never donate blood:

Have HIV/AIDs or other chronic viral condition
Diabetes

- •Hemophilia
- •Have ever contracted Ebola

Analysis

- How many blood groups/types exist?
- How many blood types affect blood compatibility? Organ Compatibility?
- What are the genetic terms to describe blood types?
 - Allele
 - Genotypes of A+, A-, B+, B-, AB+, AB-, O+, O-
 - Phenotypes of Blood Types
 - Monohybrid (Blood Type or Rh separately)
 - Dihybrid (Blood and Rh combined)
- For each blood type, determine the specific antibodies and antigens present:
 A+, A-, B+, B-, AB+, AB-, 0+, 0-
- Describe the interaction between all possible blood types donated and recipients in terms of antibody, antigen and agglutination.

- What is the difference between agglutination, coagulation and hemolysis?
- How does the Rh Factor complicate pregnancies for Rh mothers?
- What are the 4 types of blood donation?
- What benefits might be found in plasma of young adults?
- What blood type is considered a universal donor?
- What blood type is considered a universal acceptor?
- What are common reasons to delay or prevent people from donating blood?